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ABSTRACT 

This paper will discuss about the algorithms used in computation of convex hull for a given set of points 
in two and three dimensional Euclidean space. We will be going through the basic concepts used in 
three dimensional computational geometry. We will also be highlighting how important output 
sensitiveness is for any practical implementation of convex hull algorithm.  We will be mainly focusing 
on two of the most practical algorithms for the convex hull problem. 

1.1 INTRODUCTION  

From the given a set of points on a cartesian plane, we have to form a smallest convex polygon using 
these points in such a way that all the points in the given set either will lie in the interior of the convex 
polygon or the edge of the polygon. Convex hull problem is one of the most intensively studied 
problems in computational geometry. It has a wide range of applications like obstacle detection and 
collision avoidance, mesh generation, clustering, file searching, image processing, urban planning etc. 
First we will discuss the importance of output sensitiveness for convex hull problem and we introduce 
interior elimination method by Akl-Toussaint[3]. Then we will review Chan’s algorithm[2] and 
Quickhull algorithm[1] for two and three dimension. And finally we will conclude by listing the 
determining facts while choosing an convex hull algorithm for implementation. 
 
1.1.1 Output sensitive algorithms: 

If the running time complexity of an algorithm can be expressed in terms of its output size then it is an 
output sensitive algorithm. It is one of the important features to have in a convex hull algorithm, as in 
most of the practical applications the number of vertices in the boundary of polygon is very less 
compared to the total number of vertices inside the interior. Also using reduction we can prove that the 
lower bound for comparative sorting applies to convex hull computation which is Ω(n log n). So only 
way to get around that will be to make our algorithm output dependent. Jarvis march algorithm, “The 
ultimate planar convex hull algorithm” by Kirkpatrick and Raimund Seidel are one of the earliest output 
sensitive algorithm designed for convex hull problem. Another approach to improve the output 
sensitiveness of the algorithm will be to eliminate all the points which can’t be part of the convex hull 
[3]. This idea was proposed in the heuristic convex hull algorithm by Selim Akl and G. T. Toussaint 
published in 1978 [3]. Their algorithm is based on the following simple steps: 

1. Calculate the extreme endpoints in both x and y coordinates. 
2. Eliminate all the points that lies in the interior of the polygon or polytope formed by joining 

these points 
A similar approach can be used higher dimensions. Akl-Toussaint is used even today as a pre-processing 
steps in the convex hull algorithms.  
 
1.2 CHAN’S ALGORITHM: 

Chan’s algorithm is a very famous optimal output sensitive algorithm for the convex hull problem. Like 
Johnson’s algorithm for shortest paths it combines two other existing algorithms to produce a smart 
solution. Chan’s algorithm can be seen as a special version of the Jarvis’s march gift wrapping 
algorithm. It uses Graham’s scan algorithm internally. Interestingly both are slower algorithm compared 
to Chan’s. Graham scan requires sorting of the points as a pre-processing step which bounds the 
algorithm to have a minimum complexity of O(nlogn). Jarvis march is again an output sensitive 
algorithm. It does an angle search for each vertex belongs to the convex hull which costs us O(n) time 



a total of O(hn) time complexity; where h is the number of vertices in the convex hull. Chan’s algorithm 
computes the convex hull in O(nlogh) time bound.  
 
1.2.1 Algorithm: 

1. Partition the point into in to set of size ‘m’ where m lies between 1 and n 

2. For each of the ⌈n/m⌉ group of point we calculate convex hull separately using Gram’s Scan  
3. Pick a right most (any extreme end will do) point P0 in the x-coordinate. From P0 calculate 

tangents to all the other groups. Pick the steepest tangent as an edge to the convex hull 
4. Repeat the step 3 for the newly added edge and repeat until all the points are added to the 

convex hull or ‘m’ times whichever is earlier. 
 
1.2.2 Observation: 
In step 2 we can use Gram’s Scan or any other algorithm which will guaranty us with a better worst 
case performance. So each iteration will take O(mlogm)  time which leads us to having a total pre-
processing time of O((n/m) (m log m)) = O(n log m). Now we are left with the wrapping step where we 
will be using Jarvis march algorithm. Finding the tangent from one point to another point which lies on 
another group’s convex hull which is a convex m-gon takes O(logm) time[2]. And we will be computing 
for all groups (n/m) and for each point on the convex hull (h). So total time taken by this algorithm is  
                                  O(nlogm+ h((n/m)logm)) = O(n(1+h/m)logm) 
If we substitute m = h in the above equation the complexity reduces to O(n(1+ h/m)log m). But we 
don’t know the value of h in prior. So the Chan uses a technique similar one used in the Chazelle and 
Matousek's algorithm [4]. From the steps mentioned above it is clear that if we choose the value of m 
anywhere below h the algorithm will returns an error. So this observation leads us to a guessing 
technique by increasing the value of m. But we have to increase the number rapidly with every iteration 
otherwise it will bring down the performance. So we increase m’s value exponentially. We are able to 
do so because even if m is greater than h such that m = hk for some constant k, still we will be within 

the running time of O(nlogh). So sequences of guesses will be 𝑚 =  22𝑡
 for t=1,2,3.. while m<n 

 So guess cost is = n.𝑙𝑜𝑔 22𝑡
 = n.2t  

 

∑ n. 2t = O(n. 2⌈𝑙𝑜𝑔𝑙𝑜𝑔ℎ⌉+1)
⌈𝑙𝑜𝑔𝑙𝑜𝑔ℎ⌉
𝑡=1  = O(nlogh) 

 
 
1.2.3 Chan’s algorithm for three-dimension:  

Now we will analyse the application of the Chan’s algorithm for three dimension. For that we need to 
know how to apply the underlying Jarvis march and Graham’s scan algorithm to three dimension. The 
higher-dimensional analogue of Jarvis's march is Chand and Kapur's [5] gift-wrapping method [2].In 
fact Jarvis march algorithm is a two dimensional specialization of  the former. 
 
1.2.2. Observations from Chand Kapur’s gift wrapping method: 

1. Given an initial facet f0 we can compute three adjacent facet by determining each edge e by 
choosing a point p that maximizes the angle between f0 and conv(e U {p}) (obviously p should 
not be part of the edge e). 

2. Using Breadth first or Depth first pattern we can rest of the facets by repeating the above steps 
3. We will use memoization to store the computed results to avoid redundant calculations.  
4. A total of 3(2h - 4) wrapping steps are required. So the running time of the algorithm is O(nh). 

 
Similarly for computing the initial convex hull computation of the each of the group members of size 
‘m’ instead of Graham’s Scan we use Preparata and Hong's three dimensional convex hull algorithm 
[6]. So now the only remaining steps is to compute the tangent. Here we have consider the difference 
that the computation of tangent is not to a polygon but to a polyhedron. It require O(n) time complexity. 
Here a special data structure called Dobkin and Kirkpatrick hierarchical representation is used in order 
to achieve a time complexity of O(logm) 
 
1.2.5 Chan’s three dimensional algorithm steps: 

1. Partition the points into groups of size m 



2. For each group Compute conv(Pi) by Preparata and Hong's algorithm and store it in a Dobkin-
Kirkpatrick hierarchy 

3. Calculate the initial facet f0 
4. Use the Chand Kapur’s method to compute the rest of the facets 

 
This steps are repeated for the different values of ‘m’ until m ≥ h. by Preparata and Hong's algorithm 
has same complexity as Graham’s which is O(mlogm). So similar to the 2-d method with sequence of 
guesses of the value of ‘m’ we attain the same time complexity of O(nlogh) 
 
1.3 QUICKHULL ALGORITHM: 

The name comes from the way the algorithm partitions the input in the similar fashion of the quick sort. 
Similar to Quicksort although the algorithm don’t provide a good worst case performance compared to 
the others, it is one of the highly used convex hull algorithm for implementation purpose.   
 
1.3.1 Algorithm: 
The algorithm contains following steps for the 2- dimensional problem: 

1. Find the left most and right most points by finding minimum and maximum x coordinates. 
Since we know that these will always be part of the convex hull we add them to the convex hull 
set. 

2. The line connecting the left most and right most point will divide the rest of the points into two 
sets and we process them recursively. 

3. Determine the farthest point from the line and add it to the convex hull set. 

4. All the points inside triangle formed by the three point are eliminated because they can’t be 
part of the convex hull 

5. Repeat step 3 and 4 until all points are either lie inside the convex hull or are the vertices of the 
convex hull 

. We can observe that the steps in the Quckhull is very much similar to the Akl-Toussaint heuristic 
algorithm. So the performance of the algorithm will be highly dependent upon the input.  

 

1.3.2 Quickhull algorithm for three-dimension: 

Quickhull has two basic operations: i) Oriented hyper plane ii) signed distance to hyperplane [3]. In 2-
d they are analogues to a line and the Cartesian distance of a point from the line. The first step in the 
Quickhull is to compute a maximal simplex which is a tetrahedron for 3-d. 

1. Select the first three point by using the 1-3 steps in the above algorithm for 2-d. Triangle formed 
by these points gives us the oriented hyper plane. Now using the signed distance concept we 
will select the farthest point from this hyperplane. Connecting these four points gives us the 
initial hull with a tetrahedron shape.  

2. Now for each facet we will repeat the following steps. First we define ‘output set’ and add all 
the points that are above the facet to it. 

3. Calculate the farthest point p in the output set with respect to the facet  
4. Now we define ‘visible set’ and add all visible facets to it.  
5. For each neighbours in the unvisited facet in the visible set if it is above the point v then we 

add it to the visible set. 
6. Now we will recursively add points to the hull by calculating the horizon. Horizon are basically 

the edges connecting a visible and a non-visible point from a current view point. For each 
horizon edge we can form a triangular face and add this facet to the convex hull.  

7. Each time we add a new node to the convex hull all points which comes inside of the hull will 
be eliminated 
 

The worst case performance of the algorithm is O(n2). It has a space complexity of O(n). But because 
of the recursive interior elimination involved in the algorithm it gives a better average running time. 
Especially when most of the points lies in the interior of the hull, Quickhull algorithm will be a good 
implementation choice. 
 

1.4 CONCLUSIONS: 



Based on Graham scan, wrapping method and elimination procedure mentioned by Akl-Toussaint, there 
many convex hull  algorithms and enhancements that are being developed today. But choosing one of 
them for implementation will depend upon the characteristics of the problem in hand. Output 
sensitiveness, average running time and worst case time complexity will be determining factors in 
choosing such algorithms. 
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