
Machine Learning (CAP6610) Project: Deep
Generative Models with an emphasis on Variational
Autoencoders and Generative Adversarial Networks

Bhargav Ram K S
UFID: 40328191

Deepak Maniyani
UFID: 93994924

Srividya Vaishnavi Surampudi
UFID: 64803004

Abstract

In this group project, we will focus on a getting a background on recent advances
in Deep Generative Models, with special emphasis on two popular models, namely
Variational Autoencoders(VAE) and Generative Adversarial Network(GAN). We
shall first describe the density estimation problem, and how VAE and GAN are
both different varieties of solutions for density estimation. We shall describe
fundamental theoretical principles and motivations behind these models, their
training and optimization, advantages and pitfalls in the models and training process.
We will then survey some popular applications of VAE and GAN. We will examine
the results of image generation by training both Variational Autoencoders and
Deep Convolutional GAN (DCGAN) on MNIST and Fashion MNIST datasets, and
interpret the results.

1 Introduction

Generative models involve learning models of distribution p(x), where x is a vector. Generally, the
idea of learning a model involves capturing inter-dependencies between features of the x. Generative
models learn a model estimate pmodel of a distribution by using samples of the original distribution
pdata, usually in the form of a training dataset. A good generative model decides that a datapoint
which highly resembles real data gets high probability, and a datapoint which is randomly generated
gets low probability. One of the focal topic of our project is to create new datapoints which highly
resemble real data, rather than discriminate between datapoints which are likely to be real from
random noise. We explore the use of generative models for the task of creating new unseen data,
highly similar to existing data. We assume there is an oracle distribution pdata from which the
existing data is sampled. We want to learn a pmodel, which is highly similar to pdata in terms
of sampling behavior. That is, samples generated from pmodel look like real data sampled out of pdata.

As part of Machine Learning class, we have covered supervised generative models, such as Discrimi-
nant Analysis methods and unsupervised generative models, such as Gaussian Mixture Models. In
context of supervised learning, we use generative models as a way to model the joint distribution
p(x, y). In context of unsupervised learning, we can use generative models address Density Estima-
tion, a key problem in unsupervised learning. Density Estimation involves learning the distribution
pmodel(x) over a random vector x. Once we model the density, we can sample new plausible values
of data distribution, or calculate the likelihood of a new data point. Now, we shall look at models
which estimate the data distribution on the basis of maximum-likelihood estimation[22]. If we are
given a training set {xi}Ii=1, then our ideal parameters of pmodel is given by,

φ̂ = argmaxφ

[
I∑
i=1

log [p (xi|φ)]

]

Density estimation models are classified into two types, explicit and implicit density estimation
models. Variational Autoencoder is an example of an explicit density estimation model, whereas
Generative Adversarial Network is an example of implicit density estimation model. In case of
explicit density models, we make an attempt to directly define a density model pmodel(x;θ), whereas
in implicit density models, we are more interested in generating samples from the data distribution
rather than directly modelling it. A key challenge is when we want to design a computationally
tractable explicit density model which captures complexity of data to a high degree, in case of which
we can follow two strategies. Firstly, we can carefully design models with a structure that guarantees
tractability. Otherwise, we can design models whose likelihood admits computationally tractable
approximations. Variational methods falls into the second category and it operates by defining a
tractable lower bound L for the data likelihood. That is,

L(x;θ) ≤ log pmodel(x;θ)

Once we define a tractable L, we can maximize it instead of the original log-likelihood, which is
bounded below by L. We will now describe Variational auto-encoders, which define L by exploiting
properties of neural networks as complex function approximators.

2 Variational Autoencoders

For our survey on Variational Autoencoders, we have referred the original paper by Kingma et. al.
[17] and a tutorial paper by Doersch et al.[8]. Another immensely helpful source for understanding
the theoretical foundations behind Variational Autoencoders was a blog post by Borealis AI [27].

A Variational Autoencoder can be described as a non-linear latent variable model. We have seen
examples of latent variable models, such as Gaussian Mixture Models, Factor Analysis and prob-
abilistic PCA. Let us now briefly visit latent variable models and understand how they might be
useful to create models which enable us to get high fidelity samples from distributions modelled to be
statistically similar to the data distribution.

2.1 Latent Variable Models

When we want to synthesize new data by training a generative model, the complexity of the model
and requisite computational power needed for training increases with the interdependency between
the dimensions of the data. If we consider a model for generating realistic human faces, there is a
strong relationship between different parts of the face, and to generate realistic samples requires a
complicated model. The model needs to consider factors like skin-tone, symmetry, continuity and
smooth transition across the image of the generated face. To simplify the process, the model can
make an intermediate decision in the form of a latent variable, corresponding to the kind of face it
wants to generate (example: a face of a hispanic male) and use this decision to actually synthesize a
sample. Once we have inferred the latent variable model parameters, we can then sample h∗ from
the latent variable via Pr(h) and later use the conditional, Pr(x|h = h∗) to sample x∗. The latent
variable sample h∗ helps us capture important features we want in our sample and conditioned on
that, we can then sample x∗.

In a latent variable model, we express the likelihood of a point via marginalization over a latent
variable[1], i.e. Pr(x) =

∫
Pr(x,h)dh =

∫
Pr(x|h) Pr(h)dh. We have previously seen examples

of linear latent variable models in Factor Analysis, where we describe the model as,

y ∼ N (0, I)

x|y ∼ N
(
Ay + µ,Diag

(
σ2
1 , . . . , σ

2
m

))
Here, we describe the mean µx|y = Ay + µ, a linear function in the latent y. However, to model
more complex data distributions, we can exploit the properties of neural networks as non-linear
function approximators to define non-linear latent variable models, which is exactly what a Variational
Autoencoder does. The prior and likelihood are defined as:

h ∼ N (0, I)

x|h,φ ∼ N
(
f [h,φ], σ2I

)
2

Figure 1: Non-Linear Latent variable model as infinite weighted mixture of gaussians. Source:
https://www.borealisai.com/en/blog/tutorial-5-variational-auto-encoders/

Here, f [h,φ] is a neural network with parameters φ. This model can be visualized in Figure 1. At
each value of h, x|h is defined by a spherical gaussian with mean as an output of neural network.
The model now can be thought of as a weighted mixture of infinite number of isotropic Gaussians
with different means, as shown in Figure 1.

Variational autoencoders act as good models for generating real samples of data and one
of the contributing factor is the latent variable formulation of VAE. Once we learn parameters of
the network, the latent variable h has a good compact representation of important features of the
data x. We can then use the relatively simple Gaussian formulations of latent variable prior and
the conditional p(x|h) to sample new, realistic data. Now we look at a few operations we are
interested in performing once we define the non-linear latent variable model. We might be interested
in computing the likelihood of a new point via marginalization, namely,

Pr(x) =

∫
Pr(x,h|φ)dh

=

∫
Pr(x|h,φ) Pr(h)dh

=

∫
N
(
f [h,φ], σ2I

)
N (0, I)dh

But since there is a dependence of the function on the nonlinear function mean f [h,φ], the integral is
computationally intractable. Now that calculation of Pr(x) is intractable, the posterior calculation,
Pr(h|x) = Pr(x|h) Pr(h)

Pr(x) is also a difficult task. A helpful observation at this stage is that using
sampling to obtain a data point x∗ is not difficult. We can sample a h∗ of the latent variable, and
based on this we can sample x∗ from the conditional x|(h = h∗) ∼ N

(
f [h∗,φ], σ2I

)
.

2.2 Evidence Lower Bound (ELBO)

Previously, we saw that Pr(x) is an integral with no closed form expression. This realization is
problematic in two ways. The main reason of introducing non-linear latent variable model was to
express a complex Pr(x) as a marginalization using simple distributions of Pr(h) and Pr(x|h),
which we now find out to be a hard task. The second reason is that being able to compute closed
form Pr(x) will help us in parameter estimation using negative log likelihood. We now look
at a method by which we can lower bound the log likelihood (i.e. logPr(x)) and utilize the
lower bound expression for learning model parameters. Remember that our original objective was
maxφ

[∑I
i=1 log [p (xi|φ)]

]
. Let us look at the task of lower bounding log [p (xi|φ)]. We now take

advantage of the concaveness of log and introduce an auxiliary q(h) defined over latent variable to

3

https://www.borealisai.com/en/blog/tutorial-5-variational-auto-encoders/

Figure 2: The Evidence Lower Bound (ELBO) is a function of parameters θ and φ and
lies below the likelihood everywhere. Source: https://www.borealisai.com/en/blog/
tutorial-5-variational-auto-encoders/

lower bound the log likelihood of a point.

log[Pr(x|φ)] = log

[∫
Pr(x,h|φ)dh

]
= log

[∫
q(h)

Pr(x,h|φ)
q(h)

dh

]
Now if we use the fact that the log likelihood function is concave, we can lower bound the function as
follows using Jensen’s Inequality. This step is similar to the one where we use Jensen’s inequality for
constructing the Majorization function for Expectation-Maximization algorithm in class. We have,

log

[∫
q(h)

Pr(x,h|φ)
q(h)

dh

]
≥
∫
q(h) log

[
Pr(x,h|φ)

q(h)

]
dh = ELBO[θ,φ]

The RHS term is now defined as ELBO[θ,φ] and this is the entity that we want to now maximize.
We can now use ELBO[θ,φ] as sort of a proxy for the original objective and maximize it instead and
obtain optimal parameters θ,φ. We will now try to get some intuition regarding ELBO via Figure 2.
Consider θ to be fixed. Now ELBO is a function lying entirely below the original objective and it
can be maximized by varying φ. Depending on how we fix θ, the ELBO[φ] can be closer or farther
from the original objective. We are now interested in getting a tighter lower bound for a given φ by
choosing such a θ that the ELBO and the likelihood objective are as close as possible. More precisely,
among the family of ELBO functions with fixed φ, we want to find θ to result in that function which
is closest to the original log likelihood. Mathematically, we have,

ELBO[θ,φ] =

∫
q(h|θ) log

[
Pr(x,h|φ)
q(h|θ)

]
dh

=

∫
q(h|θ) log

[
Pr(h|x,φ) Pr(x|φ)

q(h|θ)

]
dh

=

∫
q(h|θ) log[Pr(x|φ)]dh+

∫
q(h|θ) log

[
Pr(h|x,φ)
q(h|θ)

]
dh

= log[Pr(x|φ)] +
∫
q(h|θ) log

[
Pr(h|x,φ)
q(h|θ)

]
dh

= log[Pr(x|φ)]−DKL[q(h|θ)‖Pr(h|x,φ)]

4

https://www.borealisai.com/en/blog/tutorial-5-variational-auto-encoders/
https://www.borealisai.com/en/blog/tutorial-5-variational-auto-encoders/

Here, DKL(.||.) term is the Kullback-Leibler divergence which is always non-negative and attains
zero when q(h|θ) = Pr(h|x,φ). That is, if we choose a distribution q(h|θ) as close as possible to
the posterior Pr(h|x,φ), better the lower bound approximation over log-likelihood we get.

2.2.1 First shot at a solution: EM algorithm

Perhaps, we can now apply Expectation Maximization algorithm. At every iteration, we can choose
parameters θ to make q(h|θ) = Pr(h|x,φ) and then via maximization step, we can infer φ to
maximize lower bound. However, this method fails for our non-linear latent variable model because
Pr(h|x,φ) is intractable as discussed earlier, hence making the expectation step prohibitive.

2.2.2 Reconstruction error minus KL on the prior

Now, we express ELBO alternately, as the real formulation relevant to the Variational Autoencoder.

ELBO[θ,φ] =

∫
q(h|θ) log

[
Pr(x,h|φ)
q(h|θ)

]
dh

=

∫
q(h|θ) log

[
Pr(x|h,φ) Pr(h)

q(h|θ)

]
dh

=

∫
q(h|θ) log[Pr(x|h,φ)]dh+

∫
q(h|θ) log

[
Pr(h)

q(h|θ)

]
dh

=

∫
q(h|θ) log[Pr(x|h,φ)]dh︸ ︷︷ ︸

Reconstruction Error

−DKL[q(h|θ),Pr(h)]︸ ︷︷ ︸
KL to prior

The first term is the reconstruction error, which measures the on-average agreement between the data
and the hidden variable that generated the data. That is, we assign higher mass to a latent variable
which resulted in the datapoint generation. The second term suggests that degree of match between
the auxiliary distribution and the prior.

2.3 Variational Approximation

We have seen before that if we choose q(h|θ) to be the posterior Pr(h|x,φ), we get a tight bound
for the ELBO, but the posterior is intractable. Now the variational step includes choosing q(h|θ) as
q(h|x,θ) instead. (After all, q(h|θ) was introduced in just the lower bounding step to use Jensen’s
inequality, so this decision on making it conditional on x isn’t arbitrary). Since Pr(h|x,φ) is
conditioned on x, it would make sense to make the q distribution also conditioned on x. Now in
the variational approximation, we approximate the intractable Pr(h|x,φ) by q(h|x,θ), a simple
Gaussian with it’s mean and variance decided by a neural network g[x,θ] with parameters θ. That is,

q(h|θ,x) ∼ N (gµ[x|θ], gσ[x|θ])

2.4 Actual formulation of Variational Autoencoder

Now after the formulation of q(h|θ,x), we have our ELBO as,

ELBO[θ,φ] =

∫
q(h|x,θ) log[Pr(x|h,φ)]dh−DKL[q(h|x,θ),Pr(h)]

We now use sampling to approximate the first integral. We sample a h∗ from the approximation
q(h|θ,x), and we write the integral using this one single sample. The ELBO is now,

ELBO[θ,φ] ≈ log [Pr (x |h∗|φ)]−DKL[q(h|x,θ),Pr(h)]
The KL term can be written using an identity[3] for KL divergence between two Gaussians. The prior
of h is standard Gaussian and q(h|θ,x) ∼ N (µ,Σ). We can write,

DKL[q(h|x,θ),Pr(h)] =
1

2

(
Tr[Σ] + µTµ−D − log[det[Σ]]

)
The whole process can be summarized as follows. We take an input x and use it to compute mean µ
and variance Σ of the q distribution via the neural network g[x,θ]. We then sample a h∗ from the q

5

Figure 3: VAE initial architecture. Notice that in the network, there is a sampling step for h∗ which
makes gradient updates through back-propagation impossible. Source: https://www.borealisai.
com/en/blog/tutorial-5-variational-auto-encoders/

distribution. Using this, we compute the KL term using estimated means µ and variance Σ, and the
sampling term using the definition of x|h,φ ∼ N

(
f [h,φ], σ2I

)
, and later combine both to compute

the ELBO. This process is illustrated in the architecture diagram in Figure 3. By this diagram, we can
see that the architecture is an autoencoder, trying to reconstruct the original data by using a non-linear
latent variable model. Hence the name, Variational Autoencoder. It is also variational, because we
make an approximation for latent variable posterior with a Gaussian whose mean and covariance is
decided by a neural network.

2.5 Re-parametrization Trick

If we observe the architecture diagram in Figure 3, we note that to update the parameters θ of the
encoder g[x,θ] we must back-propagate the gradients via a sampling stage, which is not possible.
However, we can use what is called a re-parametrization trick, which uses Cholesky decomposition
to write any Gaussian sample as a affine function of a sample from a standard normal Gaussian.

h∗ = µ+ Σ1/2ε∗

This will allow us to decouple sampling from the main pipeline where we need gradient back-
propagation to update parameters. We can now sample from a standard normal and then infer h∗

by using mean and variance from encoder neural network. We will not face any problem while
back-propagation now and we can infer all parameters. The resulting tweak is shown in architecture
in Figure 4. The training procedure is now straightforward and it can be done using Stochastic
Gradient Descent.

2.6 Benefits and Drawbacks of Variational Autoencoders

Previous models aimed at solving the task of sampling new data by modelling data distribution had
the following shortcomings. One of the drawbacks is that these models required us to make strong
structural assumptions of data, and hence they were suboptimal. Some of these models also depend on
computationally expensive methods such as Markov Chain Monte Carlo. Variational Autoencoder, on
the other hand, overcome the disadvantages faced by previous models. VAEs make weak assumptions
about the structure of the data and has a faster training stage compared to previous models due to use
of backpropagation in neural networks. VAEs also make use of deep neural networks as non-linear
function approximators and this makes it powerful.

VAEs also have some drawbacks. Since the calculation of Pr(x) involves an integral over the
latent variable, it is hard to compute a likelihood of a point in VAEs. We will have to resort to
computationally expensive procedures like Markov-Chain Monte-Carlo (MCMC) methods. Generally,
samples generated through VAE are imperfect. This is maybe because of the naive choice of the
conditional as spherically gaussian. There are also issues where during training of the model, where
the parameters can hit a local minimum, and after which the encoder always puts out mean and

6

https://www.borealisai.com/en/blog/tutorial-5-variational-auto-encoders/
https://www.borealisai.com/en/blog/tutorial-5-variational-auto-encoders/

Figure 4: VAE final architecture. Notice that in the network, the sampling step is decoupled from the
main pipeline. Parameters of neural networks, θ and φ can be updated from backpropagation. Source:
https://www.borealisai.com/en/blog/tutorial-5-variational-auto-encoders/

covariance corresponding to the uninformative latent variable prior. This phenomenon is known as
posterior collapse. One proposed solution[11, 5] is to introduce the KL divergence term in the ELBO
formulation only gradually. That is, we follow a annealing schedule where β(see below equation) is
gradually increased from 0 to 1 as training progresses.

ELBO[θ,φ] =

∫
q(h|x,θ) log[Pr(x|h,φ)]dh− βDKL[q(h|x,θ),Pr(h)]

2.7 Applications of Variational Autoencoders

We will describe a few applications of VAEs for vision and language modeling problems. Deep
Recurrent Attentive Writer (DRAW) architecture, proposed by Gregor et. al.[14] uses Variational
Autoencoder along with spatial attention mechanism to mimic the foviation of human eye to iteratively
generate better images. Maaløe et. al.[19] extended deep generative models with auxiliary latent
variables to achieve state-of-the-art results on several semi-supervised learning problems, where
only a small portion of the dataset is labelled. Bowman et. al.[4] utilized Variational Autoencoders
for a Recurrent Neural Network based language model, which was able to generate sentences with
particular style, topic and other syntactic properties. They were able to navigate the latent space to
successively obtain sentences which meaningfully integrate in-between other sentences.

3 Generative Adversarial Networks(GAN)

Previously, we described Variational Autoencoders, an explicit density estimation framework where
we defined a variational lower bound approximation L to the intractable log likelihood term. Our
previous aim was to actually approximate the density function in a closed form. However, there
are implicit density models, a class of models whose aim is not to model the density function
explicitly, but rather be able to sample accurately from the original model distribution, pmodel(x).
Generative Adversarial Nets are one of the most popular models under this category. GAN has some
advantages over VAE, namely its ability to produce better and clearer samples in case of tasks like
image synthesis. Also, in case of GAN, we do not have to do a variational lower bounding step. For
Generative Adversarial Networks, we have referred the original paper by Goodfellow et. al.[13] and
a NIPS tutorial paper by Goodfellow[12], where he offers a broad explanation of the model.

3.1 Model Description of GAN

GAN is based on a two-player game between a generator and a discriminator, both usually defined as
neural networks. The intention of the generator is to progressively generate samples(say images) that
are likely to have been generated from the original model distribution, pmodel(x). The discriminator,
on the other hand tries to examine real training samples and the samples from the generator and carry

7

https://www.borealisai.com/en/blog/tutorial-5-variational-auto-encoders/

Figure 5: Architecture of a Generative Adversarial Network. Source: http://cs231n.stanford.
edu/slides/2017/cs231n_2017_lecture13.pdf

out a supervised learning problem classifying these samples as either real or fake. For a generator
to truly succeed in the two-player game, it has to progressively learn to generate samples from the
pmodel(x).

The generator and discriminator functions are represented by G and D respectively. Generally, G
and D are neural networks with parameters/weights θG and θG respectively. The cost function or
objective of the generator is given by JG(θG,θD) and that of discriminator is denoted by JD(θG,θD).
Notice that although θG and θD are involved in both objectives, the generator controls only θD and
discriminator controls only θD. Due to these constraints, rather than defining the final objective as an
optimization problem, it is more prudent to describe it as a game whose solution is a local minimum
in the parameter (θG,θD) space. The required solution is a Nash Equilibrium, which constitutes a
parameters tuple (θG,θD) which is a local minimum of JD with respect to θD and a local minimum
of JG with respect to θG.

3.1.1 The Generator

The generator is represented by a simple differentiable function G(z). It accepts a latent variable
z sampled from a simple prior and yields an xfake = G(z) as a sample drawn to mimic data from
original data distribution pmodel(x). G is generally represented by a Deep Neural Network and the
methods by which z is accepted to the network G is also highly customizable. For example, it is
possible to feed a part of the input z as input to the first hidden layer, but the rest of z can be given as
input to some intermediate layers. Hence the inputs to G can be provided in any layer of the Deep
Neural Network and the methods of interaction of prior sample z with G are very flexible.

3.1.2 The Discriminator

The discriminator, like the generator, is also a differentiable function D(x) which takes a candidate x
as input and outputs a probability, that is a number between 0 and 1. The higher the output probability,
more probable that the input x to the discriminator is real. D(x) is also modelled as a neural network
with parameters θD. Architecture of GAN is given in Figure 5.

3.2 Description of Two-player game in GAN

The two players in GAN are the discriminator and generator, each with parameters θD and θG of the
respective neural networks. The two separate scenarios of the game can be described as below:

a) Scenario 1: We sample a real image x from training data and we feed it to D(x). Since the
image is real, D(x) strives to learn parameters to output a probability as close as possible to
1.

8

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf

b) Scenario 2: In this scenario, both the generator and discriminator participate in the game. We
sample a z from the latent variable prior p(z) and get an output from the generator network
G(z). Then the sampleG(z) is an input toD and we obtainD(G(z)). The generator tries to
fool the discriminator and it’s job is to learn neural network weights θG such that D(G(z))
is as close as possible to 1. However, the discriminator tries to do it’s best job to detect that
G(z) is a fake sample and tries to learn parameters θD to push down D(G(z)) towards 0.

If both generator and discriminator networks have adequate capacity (number of hidden layers, width
of layers etc.), the Nash equilibrium tuple (θG,θD) are such that D(x) = 1

2 for all x, whether x is a
real sample from training data or if x = G(z) a fake sample from generator output.

3.3 Cost Function of GAN

The games designed for GAN have the same cost for the discriminator under various formulations of
the game, and the formulation of this cost is motivated by two reasons. We want to maximize the
probability of D assigning a training sample as real, and we want D to assign a sample generated by
G(z) as fake. Below is the cross entropy loss formulation for JD that we want to minimize.

JD (θD,θG) = −
1

2
Ex∼pdata logD(x)− 1

2
Ez log(1−D(G(z)))

The loss/cost formulation of generators has several possible choices depending on the formulation
of the game. However, the original paper on GAN by Goodfellow et al.[13] chooses Minimax
zero-sum game formulation, in case of which the cost of the generator is simply negative of that of
the discriminator. This choice was made in the original GAN paper because it is best amenable to
theoretical analysis, which we will summarize later. In this case, the loss of entire GAN model with
respect to both generator and discriminator parameters θG and θD turns out to be

min
θG

max
θD

V (G,D) = min
θG

max
θD

[
Ex∼pdata logDθD (x) + Ez∼p(z) log (1−DθD (GθG(z)))

]
where V (G,D) is the common loss term which applies both to generator and discriminator, since the
losses are negatives of each other in minimax formulation. To elaborate, we simultaneously maximize
V (G,D) with respect to the discriminator, but minimize V (G,D) with respect to generator.

Figure 6: Algorithm for training a Generative Adversarial Network. Source: https://papers.
nips.cc/paper/5423-generative-adversarial-nets.pdf

9

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

3.4 Training Procedure of GAN

The training procedure of GAN involves alternating between gradient ascent update of Discriminator
and descent update of Generator. Generally, we do k steps of gradient ascent update for the discrimi-
nator and one step of gradient descent update for generator. For each gradient update step, two sets of
samples of size m each are sampled from the training data-set and from the latent variable prior p(z).
It was earlier considered that we need k > 1 steps of gradient ascent of discriminator for a single
gradient descent step of generator. However, setting k = 1, that is simultaneous stochastic gradient
ascent and descent for discriminator and generator is noted to not be a bad choice by Goodfellow[12].

3.5 Algorithm for training of GAN

Figure 6 gives the pseudocode for the algorithm for GAN training. The image of the algorithm has
been taken from Goodfellow et al.[13].

3.6 Intuitive understanding of GAN training process

We will now choose the above minimax formulation of GAN cost and describe some key findings.
Before diving into summarizing theoretical results on GAN, let us get some intuition on how we can
recover the original pdata distribution by training GAN, given that the neural networks G and D are
of sufficient capacity. We will consider Figure 7.

In Figure 7, part a), the blue dotted line represents the discriminative distribution i.e. pD(x). The
black dotted line represents the pdata, the data generating distribution. The green line represents
generative distribution pG(x). The lower horizontal line represents sampling from latent z and it
is mapped to a horizontal line representing the domain of x. The mapping x = G(z) imposes
a non-uniform distribution pG(x) over outputs of the generator. Part b) represents the state after
gradient ascent update of discriminator, where it is updated to recognize real training images from
the ones from the generator. Hence we see a change in discriminative distribution pD(x). In part
c) we have an update to the generator parameters θG to generate better samples closed to original
distribution. We can see that the green line (generative distribution pG(x)) is closer to dotted line(data
distribution pmodel(x)). In part d) we can see that at the stage of convergence of parameters, the
generator distribution pG(x) is almost equal to the model distribution pmodel(x). We can also see
that the discriminative distribution is now equal to a constant 1/2, i.e. it has attained a stage where it
will get fooled by samples from the generator and cannot distinguish it from real training data.

Figure 7: Pictorial description of GAN training. Source: https://papers.nips.cc/paper/
5423-generative-adversarial-nets.pdf

3.7 Summary of theoretical results on minimax formulation of GAN

The first theoretical result proven by Goodfellow et al.(2014)[13] regarding minimax formulation of
GAN loss is regarding the optimal discriminator for a fixed generator. For a given fixed generator

10

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

parameters θG, the optimal discriminator is proven to follow,

D∗G(x) =
pdata(x)

pdata(x) + pG(x)

If pG(x) ≈ pdata(x), D∗G ≈ 1
2 . Later, we will see that this configuration is this stage of convergence,

and at this point, the discriminator is unable to tell the real training image from generated fake
image (both get assigned probability of 1

2). At this point of time, we can define a Virtual Training
Criterion/Objective C(G) as,

C(G) = max
D

V (G,D)

= Ex∼pdata [logD
∗
G(x)] + Ez∼pz [log (1−D∗G(G(z)))]

= Ex∼pdata [logD
∗
G(x)] + Ex∼pG [log (1−D∗G(x))]

= Ex∼pdata

[
log

pdata (x)

Pdata (x) + pG(x)

]
+ Ex∼pG

[
log

pG(x)

pdata (x) + pG(x)

]
The next step is the important result that C(G) attains a global minimum when pdata = pG. Goodfel-
low et al.(2014)[13] prove that C(G) can be expressed as,

C(G) = − log(4) +DKL

(
pdata‖

pdata + pG
2

)
+DKL

(
pG‖

pdata + pG
2

)
= − log(4) + JSD(pdata||pG)

This means that the global minimum of C(G) is obtained only when pdata = pG, since the Jensen-
Shannon divergence term, JSD(.||.) is non-negative and is equal to zero when the two input
distributions pdata = pG, i.e. they are the same distributions. Next, the authors Goodfellow et
al.(2014)[13] prove that, given the generator and discriminator networks have sufficient capacity
(depth of the network and width of layers), and at each step of algorithm, the discriminator is allowed
to configure itself to the state of being an optimal discriminator (as described above), GAN can
converge to a stage where the model distribution is equal to the data distribution.

3.8 Benefits and Drawbacks of GANs

GANs are highly aligned and streamlined with the goal of producing realistic data and give state-
of-the-art results in image synthesis of various types of data such as faces, chairs, animals or nature
visuals. This is mainly because the GAN optimization problem where the generator progressively
learns to produce realistic artificial data is tailored for the image synthesis problem. GANs are also
excellent in semi-supervised learning tasks as shown by Salimans et. al.[26], which require us to train
good classifiers with dataset where only a portion of data is labelled. The GAN optimization problem
does not involve lower bounding via variational approximation like in VAEs. Because of this, there is
no deterministic bias introduced in the GAN optimization problem, which leads to sharper feature
learning. GANs require only one forward pass through the model to generate a sample, unlike earlier
models like Boltzmann Machines, where generating a new sample required us to do unknown number
of iterations through a Markov chain.

GANs are disadvantageous in that the training process is complicated. The optimization formulation
is non-standard and we need find an Nash equilibrium point for the parameters of the model. The
optimization tools for minimax problems are not advanced enough and and there is no good algorithm
for finding equilibrium point for GAN. Hence, the training is unstable, compared to that of Variational
Autoencoder. It is also difficult to use GAN for discrete data such as text or speech. The training
process requires a lot of human supervision to prevent the model from getting stuck in local minima.
It is also difficult to reverse engineer the posterior p(z|x), to get back the latent variable/noise that
generated the image sample.

3.9 Architectural variants of GAN

The GAN architecture was first discussed in the paper by Goodfellow et al.[13] and there have been
various model novelties over the years and can be classified into the below categories[6].

11

3.9.1 Fully Connected GANs

Fully Connected GANs are the first GAN architecture and for both generator and discriminator
use fully connected neural network.This architecture is implemented for simple image datasets like
MNIST, CIFAR-10 (natural images) and the Toronto Face Dataset (TFD) [6, 2].

3.9.2 Convolutional GANs

One constant criticism behind neural networks is the lack of algorithm based approach and use of
black-box methods. For convolutional neural networks Zeiler et. al.[28] presented approximate
purpose of each convolution filter in the CNN using deconvolutions and by the filtering the maximal
activations. Similar work [6] performs gradient descent on the inputs to examine the ideal image
that activates certain subsets of filters.These developments inspired different models of convolutional
GANs mainly LAPGAN model and DCGAN model.

3.9.3 Laplacian pyramid of adversarial networks (LAPGAN)

The authors of LAPGAN [7] proposed a model combining the Laplacian pyramid representation with
a conditional GAN model. This model iteratively upscales low resolution generated images which are
more reliable in modelling. The Laplacian pyramid consists of a grouth truth image decomposed with
the conditional convolutional GAN is used in training the generation process using multiple scales
producing each layer from the previous layer. The structure is explained in the Figure 8. The G and
D networks receive additional label information which improves the image quality. This model finds
great applications in generating coarse-to-fine fashion images and has been explored for datasets like
MNIST, CIFAR, LSUN.

Figure 8: LAPGAN model

However, unlike supervised learning, the generator and discriminator could not be trained with the
same level of capacity and representational power.

3.9.4 Deep Convolutional GAN (DCGAN)

DCGAN[23] is a family of network architectures which supports stable training of a pair of deep
convolutional generator and discriminator networks. For training, DCGANs utilise convolutions
of strided and fractionally-strided to implement the learning of the spatial down-sampling and
up-sampling operators. These operators handle the change in sampling rates and locations, a key
requirement in mapping from image space to possibly lower-dimensional latent space, and from
image space to a discriminator.

12

3.9.5 Conditional GANs

Conditional GAN[21] architecture is an extension of Generative Adversarial nets to a conditional
model where both the G and D are conditioned by feeding an additional input layer of some extra
auxiliary information y.

In the G, the prior input noise is ∼ pz(z) and the y are combined in joint hidden representation. In
D, x and y are inputs to a discriminative function.The objective function of a two-player minimax
game would be,

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))]

For example,the pix2pix model [15] learns the mapping from the input image to the output image and
constructs a loss function to train this. This is useful in computer vision for semantic segmentation,
colorization of black and white images, and generating maps from aerial photos.

3.9.6 GANs with Inference Models

In the previous architectures, GANs lack an important mechanism of inference.The context of
inference is the ability to determine the output of z with the given observation x. The inference
network was introduced in Adversarially Learned Inference (ALI)[10] and Bidirectional GANs[9]
where the discriminators examine joint (data, latent) pairs, in which the generator consists of two
networks encoder (inference network) and decoder.

The two joint distributions can be expressed as:

Encoder joint : q(x, z) = q(x)q(z | x)

Decoder joint : p(x, z) = p(z)p(x | z)

The above distributions are jointly trained to fool the discriminator. The discriminator receives pairs
of (x, z) vectors, and has to determine which pair constitutes a genuine tuple consisting of real image
sample and its encoding, or a fake image sample and the corresponding latent-space input to the
generator. The output or reconstruction of encoding/decoding model is similar to input[6] The value
function and the optimal discriminator are formalized in the following

min
G

max
D

V (D,G) = Eq(x)[log(D(x, Gz(x)))] + Ep(z)[log(1−D(Gx(z), z))]

=

∫∫
q(x)q(z | x) log(D(x, z))dxdz

+

∫∫
p(z)p(x | z) log(1−D(x, z))dxdz

D∗(x, z) =
q(x, z)

q(x, z) + p(x, z)

However, the fidelity of reconstructed data samples synthesized using the above two GANs are
poor.This can be improved by the next architecture.

3.9.7 Adversarial Autoencoders (AAE)

Adversarial Autoencoders (AAE) are probabilistic autoencoders which was first discussed by
Makhzani et. at [20]. Adversarial training accomplishes feedforward and ancestral sampling with
training applied between the latent space and a desired prior distribution on the latent space. This
composition results in a reconstruction and the two mappings are trained to replicate the original
image.The architecture is explained in the figure .

The result is a combined loss function of both the reconstruction error and the measure of the
difference in distribution of the prior from that produced by candidate encoding network.

13

Figure 9: Architecture of Adversarial Autoencoders, Source: https://arxiv.org/pdf/1511.05644.pdf

3.10 Applications of GAN

GANs have made a significant contribution to various fields like Computer Vision, Natural Language
Processing, Image processing etc. The most well-studied and vastly explored application is Image
synthesis[6, 24] which generates new images from given attributes like class labels. In supervised
learning, the networks learn the mapping from the input image to output image as well as from a loss
function which helps in performing different loss formulations. The images can also be synthesized
from reverse captioning or text descriptions resulting in several possible images that match the
description. The model Generative Adversarial What-Where Network (GAWWN)[6, 25] conditions
on image location. It consists of an interactive interface that provides tools to intuitively edit
images and constructs large images incrementally with textual descriptions of parts and user-supplied
bounding boxes.

In the field of image processing, there is a growing demand for high-resolution images to improve
the accuracy of results during image analysis and pattern recognition. Super Resolution is a set of
methods of upscaling video or images with the inference of photo-realistic details during up-sampling
training. This is extended in the Super Resolution GAN (SRGAN)[6, 18] model by adding an
adversarial loss component that adjusts the images to a manifold of natural images. The component
is obtained from a larger loss function with the perceptual loss from a pre-trained classifier and
regularization loss of spatially coherent images. These applications based on Computer Vision have
been discussed in detail by Alqahtani et al.[2].

4 Experiments: Variational Autoencoders and DCGAN for Image Synthesis

We trained the Variational Autoencoder(implemented in PyTorch) and Deep Convolutional GAN
(DCGAN)(implemented in TensorFlow 2.0) models for image generation task on MNIST and Fashion
MNIST datasets(Github: https://github.com/deepakgm/deep-generative-models). We
will briefly describe the model specifics of both VAE and GAN, and later describe the results in
the next section. In the VAE model, the encoder and decoder neural networks consist of fully
connected layers with ReLU activation. As described before, the encoder neural network has one
input of the training data and has two outputs, corresponding to the auxiliary distribution’s mean
and variance respectively. These outputs are used for generating a sample from the q distribution
via reparametrization trick. The generated sample is then used to make a reconstruction of the input
and later, the ELBO loss is calculated and the gradients of the loss with respect to model parameters
are backpropagated. We train for 10 epochs with a batch size of 128, and we use the Adam [16]

14

optimizer for the loss function. After every epoch, we generate an image through the decoder so
that as the training progresses epoch after epoch, we get a demonstration of how the model learns to
generate better and realistic images.

The DCGAN model, as described before, contains convolutional neural network layers for the
generator and discriminator. The generator takes as input a random noise and through a series of
up-sampling operations via 2d transpose convolutions, and we progressively get spatially enlarged
features with decreased volume depth. The regularization in the generator is done via batch nor-
malization [23] and leaky ReLU activation is used. The discriminator consists of downsampling
stages via 2d convolutional layers with leaky ReLU activation, and the regularization is achieved via
dropout. We trained the DCGAN model for 180 epochs with a batch size of 256. The model uses a
cross entropy loss and both generator and discriminator use the Adam optimizer. After each epoch of
training, we visualize sample images produced by the generator on a random input. We can see that
the model learns to produce better images as training progresses. We now present the results of the
VAE and DCGAN models on MNIST and Fashion MNIST datasets.

4.1 Results

Figure 10: Sample images generated by VAE
model for MNIST dataset

Figure 11: Sample images generated by DC-
GAN model for MNIST dataset

For the MNIST dataset containing 60000 images, once the training of both VAE and DCGAN are
completed, the above images are generated. For the Fashion MNIST dataset containing 60000 images,
we get the following images once training is completed for VAE and DCGAN.

Figure 12: Sample images generated by VAE
model for Fashion MNIST dataset

Figure 13: Sample images generated by DC-
GAN model for Fashion MNIST dataset

15

4.2 Discussion

During the training procedure, we observe that the loss of GAN fluctuates wildly as the iterations
progress, which is an indication that the training stage of GAN is somewhat unstable, compared to
VAE. In both MNIST and Fashion MNIST datasets, we can observe that the images produced by
VAE are blurry and somewhat less clearer than the ones produced by DCGAN. We can conjecture
why we might be observing such results as follows. In case of the vanilla VAE that we trained, it is
possible that the Gaussians modelled via fully connected neural networks are not expressive enough
to capture the full complexity of data distribution.

Another reason why we might observe blurriness might be the maximum likelihood formulation of
the problem itself. In case we are maximizing likelihood, we want DKL (pdata ‖pmodel) to be small.
It is possible that the pmodel trained by us, in addition to assigning high probability to points from
data distribution, also assigns high probability to other points which happen to be blurry. Also, in
case of GANs, the job of the generator is to capture all features that might let it fool the discriminator.
Hence in the training process, the generator tends to gain ability to learn sharper features, such as
boundaries and edges, which helps in producing better quality of images. Another reason why we can
observe blurriness in VAE might be because of the definition of x|h,φ ∼ N

(
f [h,φ], σ2I

)
. This

isotropic Gaussian definition might not be a good assumption regarding data because effectively we
are assuming the different pixels of the image as independent Gaussians, which might be restricting.

5 Conclusion

This project paper explains Deep Generative Models and presents a study of Variational Autoencoders
and Generative Adversarial Networks. We first describe the theory and foundations behind both
models, and how they leverage the power of neural networks as non-linear function approximators to
tackle difficult problems in areas like vision and language modelling. We do a demonstration of
performance of VAE and DCGAN on benchmarked datasets in task of image generation, namely
MNIST and Fashion MNIST. We interpret these results and pose conjectures and speculations
regarding why the results are the way they turned out to be. We observe that in general, VAEs tend to
produce blurry image samples on both MNIST and Fashion MNIST.

*Note: In the below references section, the main papers referred are indicated in bold text.

References
[1] A Albert and Emmanuel Lesaffre. Multiple group logistic discrimination. In Statistical Methods

of Discrimination and Classification, pages 209–224. Elsevier, 1986.

[2] Hamed Alqahtani, Manolya Kavakli-Thorne, and Gulshan Kumar. Applications of generative
adversarial networks (gans): An updated review. Archives of Computational Methods in
Engineering, pages 1–28, 2019.

[3] Christopher M. Bishop. Pattern recognition and machine learning. Information science and
statistics. Springer.

[4] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349,
2015.

[5] Li Chunyuan. Less pain, more gain: A simple method for VAE training with less of that
KL-vanishing agony.

[6] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and
Anil A Bharath. Generative Adversarial Networks: An Overview. IEEE Signal Processing
Magazine, 35(1):53–65, 2018.

[7] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using
a laplacian pyramid of adversarial networks. In Advances in neural information processing
systems, pages 1486–1494, 2015.

16

[8] Carl Doersch. Tutorial on Variational Autoencoders. arXiv preprint arXiv:1606.05908, 2016.

[9] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv
preprint arXiv:1605.09782, 2016.

[10] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Ar-
jovsky, and Aaron Courville. Adversarially learned inference. arXiv preprint arXiv:1606.00704,
2016.

[11] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and Lawrence Carin.
Cyclical annealing schedule: A simple approach to mitigate kl vanishing. In NAACL 2019,
February 2019.

[12] Ian Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv preprint
arXiv:1701.00160, 2016.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial Nets. In Advance-
makhzani2015adversarials in neural information processing systems, pages 2672–2680, 2014.

[14] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. Draw:
A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623, 2015.

[15] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with
conditional adversarial networks. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[17] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

[18] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic
single image super-resolution using a generative adversarial network. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4681–4690, 2017.

[19] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Auxiliary deep
generative models. arXiv preprint arXiv:1602.05473, 2016.

[20] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adver-
sarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

[21] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

[22] Kamalaldin Morad, William Y Svrcek, and Ian McKay. Probability density estimation using
incomplete data. ISA transactions, 39(4):379–399, 2000.

[23] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with reg-
ularized deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

[24] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak
Lee. Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396, 2016.

[25] Scott E Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, and Honglak Lee.
Learning what and where to draw. In Advances in neural information processing systems, pages
217–225, 2016.

[26] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems,
pages 2234–2242, 2016.

17

[27] Prince Simon. Tutorial #5: Variational autoencoders. Available at: https://www.borealisai.
com/en/blog/tutorial-5-variational-auto-encoders/.

[28] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833. Springer, 2014.

18

https://www.borealisai.com/en/blog/tutorial-5-variational-auto-encoders/
https://www.borealisai.com/en/blog/tutorial-5-variational-auto-encoders/

	Introduction
	Variational Autoencoders
	Latent Variable Models
	Evidence Lower Bound (ELBO)
	First shot at a solution: EM algorithm
	Reconstruction error minus KL on the prior

	Variational Approximation
	Actual formulation of Variational Autoencoder
	Re-parametrization Trick
	Benefits and Drawbacks of Variational Autoencoders
	Applications of Variational Autoencoders

	Generative Adversarial Networks(GAN)
	Model Description of GAN
	The Generator
	The Discriminator

	Description of Two-player game in GAN
	Cost Function of GAN
	Training Procedure of GAN
	Algorithm for training of GAN
	Intuitive understanding of GAN training process
	Summary of theoretical results on minimax formulation of GAN
	Benefits and Drawbacks of GANs
	Architectural variants of GAN
	Fully Connected GANs
	Convolutional GANs
	Laplacian pyramid of adversarial networks (LAPGAN)
	Deep Convolutional GAN (DCGAN)
	Conditional GANs
	GANs with Inference Models
	Adversarial Autoencoders (AAE)

	Applications of GAN

	Experiments: Variational Autoencoders and DCGAN for Image Synthesis
	Results
	Discussion

	Conclusion

